Numbers We Can Believe in? — Part 1: Counterfactual and Welfare Analysis —

The Simplest Gravity Model: Armington

- **②** Gravity Models and the Gains from Trade: ACR (AER 2012)
- Seyond ACR's Equivalence Result: CR (Handbook 2014)

1. The Simplest Gravity Model: Armington

The Armington Model

JIE Summer School (Part 1)

Overview of the Armington Model

- Many countries indexed by i = 1, ..., n
- Each country is endowed with L_i units of labor
- Each country can produce one good one-to-one from labor
 - Trade between country i and j is subject to iceberg trade costs $au_{ij} \geq 1$
- Each country has a representative agent with CES utility

• $\sigma =$ elasticity substitution between goods from different countries

- In equilibrium: consumers maximize utility + labor market clear
- Utility maximization \Rightarrow bilateral trade flows satisfy gravity equation:

$$X_{ij} = \frac{\left(w_i \tau_{ij}\right)^{1-\sigma}}{\sum_{l=1}^{n} \left(w_l \tau_{lj}\right)^{1-\sigma}} w_j L_j$$

• Labor market clearing \Rightarrow wages $\{w_i\}$ solve non-linear system:

$$w_i L_i = \sum_j \frac{(w_i \tau_{ij})^{1-\sigma}}{\sum_{l=1}^n (w_l \tau_{lj})^{1-\sigma}} w_j L_j$$

• In what follows $\varepsilon \equiv -\frac{d \ln X_{ij}/X_{jj}}{d \ln \tau_{ij}} = \sigma - 1$ denotes the **trade elasticity**

Counterfactual and Welfare Analysis

• Question:

Consider a foreign shock: $L_i \rightarrow L'_i$ for $i \neq j$ and $\tau_{ij} \rightarrow \tau'_{ij}$ for $i \neq j$. How do foreign shocks affect real consumption, $C_i \equiv w_i / P_i$?

• Let P_j denote the CES price index. Shephard's Lemma implies

$$d \ln C_j = d \ln w_j - d \ln P_j = -\sum_{i=1}^n \lambda_{ij} \left(d \ln p_{ij} - d \ln p_{jj} \right)$$

with $p_{ij} \equiv w_i \tau_{ij}$ and $\lambda_{ij} \equiv X_{ij} / w_j L_j$.

Gravity implies

$$d \ln \lambda_{ij} - d \ln \lambda_{jj} = -\varepsilon \left(d \ln p_{ij} - d \ln p_{jj} \right).$$

Counterfactual and Welfare Analysis

• Combining these two equations yields

$$d \ln C_j = rac{\sum_{i=1}^n \lambda_{ij} \left(d \ln \lambda_{ij} - d \ln \lambda_{jj}
ight)}{arepsilon}.$$

• Noting that
$$\sum_i \lambda_{ij} = 1 \Longrightarrow \sum_i \lambda_{ij} d \ln \lambda_{ij} = 0$$
 then
 $d \ln C_j = -\frac{d \ln \lambda_{jj}}{\varepsilon}.$

• Integrating the previous expression yields $(\hat{x} = x'/x)$

$$\hat{C}_j = \hat{\lambda}_{jj}^{-1/\varepsilon}$$

So What is the Welfare Impact of a Foreign Shock?

- In general, predicting $\hat{\lambda}_{jj}$ requires (computer) work
 - We can use exact hat algebra as in Dekle, Eaton and Kortum (2008)
 - Using gravity equation + data {λ_{ij}, Y_j}, and ε we can solve for counterfactual changes in wages (up to choice of numeraire)

$$\widehat{w}_{i} = \sum_{j=1}^{n} \frac{\lambda_{ij} \, \widehat{w}_{j} \, Y_{j} \left(\widehat{w}_{i} \, \widehat{\tau}_{ij} \right)^{\varepsilon}}{Y_{i} \sum_{i'=1}^{n} \lambda_{i'j} \left(\widehat{w}_{i'} \, \widehat{\tau}_{i'j} \right)^{\varepsilon}}.$$

• Then we can compute change in sufficient statistic for welfare:

$$\widehat{\lambda}_{jj} = \left[\sum_{i=1}^n \lambda_{ij} \left(\hat{w}_i \hat{\tau}_{ij}\right)^{arepsilon}
ight]^{-1}$$
 ,

Predicting how bad it would be to shut down (all) trade is easier...

• In autarky,
$$\lambda_{jj} = 1$$
. So

$$C_j^A/C_j = \lambda_{jj}^{1/\varepsilon}$$

• Thus gains from trade can be computed as

$$GT_j \equiv 1 - C_j^A / C_j = 1 - \lambda_{jj}^{1/\varepsilon}$$

- Suppose that we have estimated trade elasticity using gravity equation
 - Central estimate is $\varepsilon = 5$; see Head and Mayer (Handbook, 2014)
- Using World Input Output Database (2008) to get λ_{jj} , we get GT_j :

	λ_{jj}	% GT _j
Canada	0.82	3.8
Denmark	0.74	5.8
France	0.86	3.0
Portugal	0.80	4.4
Slovakia	0.66	7.6
U.S.	0.91	1.8

JIE Summer School (Part 1)

2. Gravity Models and the Gains from Trade: ACR (AER, 2012)

- ACR focus on gravity models
 - PC: Armington and Eaton & Kortum '02
 - MC: Krugman '80 and many variations of Melitz '03
- Within that class, welfare changes are $(\hat{x} = x'/x)$

$$\hat{C} = \hat{\lambda}^{1/\varepsilon}$$

- Two sufficient statistics for welfare analysis are:
 - Share of domestic expenditure, λ ;
 - Trade elasticity, ε
- Two views on ACR's result:
 - Pessimistic: within that class of models, micro-level data do not matter
 - Optimistic: welfare predictions of Armington model are more robust/credible than you thought

Primitive Assumptions

Preferences and Endowments

• CES utility

• Consumer price index,

$$P_i^{1-\sigma} = \int_{\omega \in \Omega} p_i(\omega)^{1-\sigma} d\omega,$$

• One factor of production: labor

- $L_i \equiv$ labor endowment in country *i*
- $w_i \equiv$ wage in country *i*

Primitive Assumptions Technology

• Linear cost function:

$$C_{ij}(\omega, t, q) = \underbrace{qw_i\tau_{ij}\alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}}}_{\text{variable cost}} + \underbrace{w_i^{1-\beta}w_j^{\beta}\xi_{ij}\phi_{ij}(\omega) m_{ij}(t)}_{\text{fixed cost}},$$

q : quantity,

 τ_{ii} : iceberg transportation cost,

 $\alpha_{ii}(\omega)$: good-specific heterogeneity in variable costs,

 ξ_{ii} : fixed cost parameter,

 $\phi_{ij}(\omega)$: good-specific heterogeneity in fixed costs.

Primitive Assumptions Technology

• Linear cost function:

$$C_{ij}(\omega, t, q) = q w_i \tau_{ij} \alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}} + w_i^{1-\beta} w_j^{\beta} \xi_{ij} \phi_{ij}(\omega) m_{ij}(t)$$

 $m_{ij}(t)$: cost for endogenous destination specific technology choice, t,

$$t \in [\underline{t}, \overline{t}]$$
, $m'_{ij} > 0$, $m''_{ij} \ge 0$

Primitive Assumptions Technology

• Linear cost function:

$$C_{ij}(\omega, t, q) = q w_i \tau_{ij} \alpha_{ij}(\omega) t^{\frac{1}{1-\sigma}} + w_i^{1-\beta} w_j^{\beta} \xi_{ij} \phi_{ij}(\omega) m_{ij}(t)$$

• Heterogeneity across goods

$$G_{j}\left(\alpha_{1},...,\alpha_{n},\phi_{1},...,\phi_{n}\right)\equiv\left\{\omega\in\Omega\mid\alpha_{ij}\left(\omega\right)\leq\alpha_{i},\,\phi_{ij}\left(\omega\right)\leq\phi_{i},\,\forall i\right\}$$

Primitive Assumptions

Market Structure

Perfect competition

- Firms can produce any good.
- No fixed exporting costs.

Monopolistic competition

- Either firms in *i* can pay $w_i F_i$ for monopoly power over a random good.
- Or exogenous measure of firms, $\overline{N}_i < \overline{N}$, receive monopoly power.
- Let N_i be the measure of goods that can be produced in i
 - Perfect competition: $N_i = \overline{N}$
 - Monopolistic competition: $N_i < \overline{N}$

Macro-Level Restrictions

• Bilateral trade flows are

$$X_{ij} = \int_{\omega \in \Omega_{ij} \subset \Omega} x_{ij}(\omega) \, d\omega$$

• **R1** For any country *j*,

$$\sum_{i
eq j} X_{ij} = \sum_{i
eq j} X_{ji}$$

- Trivial if perfect competition or $\beta = 0$.
- Non trivial if $\beta > 0$.

• R2 For any country j,

$$\Pi_j / \left(\sum_{i=1}^n X_{ji}
ight)$$
 is constant

where Π_j : aggregate profits gross of entry costs, $w_j F_j$, (if any)

- Trivial under perfect competition.
- Direct from Dixit-Stiglitz preferences in Krugman (1980).
- Non-trivial in more general environments.

Macro-Level Restriction CES Import Demand System

• Import demand system

$$(\mathsf{w},\mathsf{N}, au) o \mathsf{X}$$

1

• R3

$$\varepsilon_{j}^{ii'} \equiv \partial \ln \left(X_{ij} / X_{jj} \right) / \partial \ln \tau_{i'j} = \begin{cases} \varepsilon < 0 & i = i' \neq j \\ 0 & otherwise \end{cases}$$

• Note: symmetry and separability.

- The trade elasticity ε is an upper-level elasticity: it combines
 - $x_{ij}(\omega)$ (intensive margin)
 - Ω_{ij} (extensive margin).
- R3 \implies complete specialization.
- R1-R3 are not necessarily independent

• If
$$\beta = 0$$
 then R3 \implies R2.

Macro-Level Restriction Strong CES Import Demand System (AKA Gravity)

• R3' The IDS satisfies

$$X_{ij} = \frac{\chi_{ij} \cdot M_i \cdot (w_i \tau_{ij})^{\varepsilon} \cdot Y_j}{\sum_{i'=1}^n \chi_{i'j} \cdot M_{i'} \cdot (w_{i'} \tau_{i'j})^{\varepsilon}}$$

where χ_{ij} is independent of $(\mathbf{w}, \mathbf{M}, \boldsymbol{\tau})$.

• Same restriction on $\varepsilon_{j}^{\prime i \prime'}$ as R3 but, but additional structural relationships

• State of the world economy:

$$\mathsf{Z}\equiv(\mathsf{L}, au, \boldsymbol{\xi})$$

• Foreign shocks: a change from Z to Z' with no domestic change.

• Proposition 1: Suppose that R1-R3 hold. Then

$$\widehat{W}_j = \widehat{\lambda}_{jj}^{1/\varepsilon}.$$

- Implication: 2 sufficient statistics for welfare analysis $\widehat{\lambda}_{jj}$ and ε
- New margins affect structural interpretation of ε
 - ...and composition of gains from trade (GT)...
 - ... but size of GT is the same.

- Proposition 1 is an *ex-post* result... a simple *ex-ante* result:
- Corollary 1: Suppose that R1-R3 hold. Then

$$\widehat{W}_{j}^{A} = \lambda_{jj}^{-1/\varepsilon}.$$

- A stronger ex-ante result for variable trade costs under R1-R3':
- Proposition 2: Suppose that R1-R3' hold. Then

$$\widehat{W}_j = \widehat{\lambda}_{jj}^{1/\varepsilon}$$

where

$$\widehat{\lambda}_{jj} = \left[\sum_{i=1}^{n} \lambda_{ij} \left(\hat{w}_i \hat{\tau}_{ij}\right)^{\varepsilon}\right]^{-1}$$
 ,

and

$$\widehat{w}_{i} = \sum_{j=1}^{n} \frac{\lambda_{ij} \widehat{w}_{j} Y_{j} (\widehat{w}_{i} \widehat{\tau}_{ij})^{\varepsilon}}{Y_{i} \sum_{i'=1}^{n} \lambda_{i'j} (\widehat{w}_{i'} \widehat{\tau}_{i'j})^{\varepsilon}}.$$

• ε and $\{\lambda_{ij}\}$ are sufficient to predict \widehat{W}_j (ex-ante) from $\hat{\tau}_{ij}$, $i \neq j$.

• ACR consider models featuring:

- (*i*) Dixit-Stiglitz preferences;
- (*ii*) one factor of production;
- (iii) linear cost functions; and
- (*iv*) perfect or monopolistic competition;

with three macro-level restrictions:

- (*i*) trade is balanced;
- (ii) aggregate profits are a constant share of aggregate revenues; and
- (iii) a CES import demand system.
- Equivalence for ex-post welfare changes and GT
 - under R3' equivalence carries to ex-ante welfare changes

3. Beyond ACR's Equivalence Result: CR (Handbook, 2014)

Beyond ACR's Equivalence Result

Add multiple sectors

- Typically nested CES preferences, with different elasticities of substitution between and within sectors
- Here Cobb-Douglas between sectors
- 2 Add traded intermediates
 - Typically nested CES technologies, with different elasticities of substitution between and within different types of inputs
 - Here Cobb-Douglas between intermediates
- Add imperfect competition
 - Typically monopolistic competition
 - Here with and without firm heterogeneity

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
MS, IO, PC	29.5	11.2	22.5	29.2	8.0

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
MS, IO, PC	29.5	11.2	22.5	29.2	8.0
MS, IO, MC (Krugman)	33.0	28.0	41.4	20.8	8.6

	Canada	China	Germany	Romania	US
Aggregate	3.8	0.8	4.5	4.5	1.8
MS, PC	17.4	4.0	12.7	17.7	4.4
MS, MC	15.3	4.0	17.6	12.7	3.8
MS, IO, PC	29.5	11.2	22.5	29.2	8.0
MS, IO, MC (Krugman)	33.0	28.0	41.4	20.8	8.6
MS, IO, MC (Melitz)	39.8	77.9	52.9	20.7	10.3

• In Armington: back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{tariff}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$

- In Armington: back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{tariff}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$
- In more general gravity models: we can follow the same approach

- In Armington: back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{tariff}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$
- In more general gravity models: we can follow the same approach
 - Use exact algebra (ACDshow how to do this nonparametrically)

- In Armington: back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{tariff}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$
- In more general gravity models: we can follow the same approach
 - Use exact algebra (ACDshow how to do this nonparametrically)
 - Just need more elasticities (Preferences, IO linkages etc.)

- In Armington: back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{tariff}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$
- In more general gravity models: we can follow the same approach
 - Use exact algebra (ACDshow how to do this nonparametrically)
 - Just need more elasticities (Preferences, IO linkages etc.)
- By construction: calibrated model always exactly matches data!

- In Armington: back to $\{\lambda_{ij}, Y_j\}$, ε and $\{\hat{tariff}_{ij}\}$ to get implied $\hat{\lambda}_{jj}$
- In more general gravity models: we can follow the same approach
 - Use exact algebra (ACDshow how to do this nonparametrically)
 - Just need more elasticities (Preferences, IO linkages etc.)
- By construction: calibrated model always exactly matches data!
- Question: Does that make counterfactual predictions "credible"?

Still a pretty restrictive class of models...

JIE Summer School (Part 1)