JIE Summer School

Lecture 3A: Some Observational and Theoretical Foundations

Jonathan Eaton Pennsylvania State University

15 June 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I. Observational Foundations

The Gravity Equation in Trade

The observation that exports to country *n* from country *i*, X_{ni} is well described by the equation:

$$X_{ni} = \frac{X_i \cdot X_n}{D_{ni}}$$

where X_j is some measure of the "mass" of country j and D_{ni} captures "bilateral resistance" between them

- ln standard applications the mass of country j is captured by its GDP and D_{ni} by the distance between n and i.
- Origins: Isard (1954), Tinbergen (1962),...
- Theoretical foundations: Anderson (1979), Eaton and Kortum (2002), Anderson and Van Wincoop (2003), Melitz (2003)-Chaney (2008),...

Gravity and Merchandise Trade

From Eaton and Cecília Fieler (2022) "The Margins of Trade":

- UN COMTRADE bilateral trade data for 100 Countries in HS6 products in 2007
 - US\$ values X_{nik} of imports by n from i of product k
 - units (weight, usually, or counts) Q_{nik} of imports by n from i of product k

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- allowing us to infer unit values (prices) $p_{nik} = X_{nik} / Q_{nik}$
- World Bank: GDP and GDP per capita
- CEPII: distance and other bilateral indicators

The Basic Regression

dependent variable $ ightarrow$	value	(s.e.)		
exporter GDP	1.356	(0.054)		
importer GDP	1.110	(0.034)		
distance	-1.190	(0.083)		
R-squared	0.670			
number of observations	9,479			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

All variables are in logs.

Dissecting Gravity

- A huge amount of work has been done on the econometrics of the gravity equation and how it relates to theory
- For today, let's accept that the gravity equation is a robust relationship connecting aggregate trade, GDP, and distance
- So if we break down aggregate trade and total GDP into various pieces, we can ask how the individual pieces contribute to gravity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Margins of GDP

• Define y_i as per capita income and L_i as population

so that

 $\log GDP_i = \log y_i + \log L_i$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Margins of Trade

Expanding on Hummels and Klenow (2005):

Extensive margin

 $E_{ni} = \frac{\text{number of products exported to } n \text{ from } i}{\text{total number of products in data}}$

• **Price** is an impoter-exporter fixed effect log *P_{ni}* in the regression:

$$\log p_{nik} = \log P_{ni} + \delta_k + \epsilon_{nik}$$

where p_{nik} is the unit value of country *n*'s imports from country *i* in product *k* and δ_k are product fixed effects

Quantity

$$\log Q_{ni} = \log X_{ni} - \log E_{ni} - \log P_{ni}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 X_{ni} is the value of the trade flow from *i* to *n*

Gravity on the Margins

	extensive			
dependent variable $ ightarrow$	value	margin	quantity	price
exporter GDP	1.36	0.88	0.45	0.03
importer GDP	1.11	0.40	0.66	0.05
distance	-1.19 -0.72		-0.51	0.03
exporter GDP per capita	1.35	0.92	0.33	0.10
exporter population	1.36	0.85	0.55	-0.0
· · · · ·	1 00	0.46	0.51	0.13
importer GDP per capita	1.09	0.40	0.51	0.1
importer GDP per capita importer population	1.13	0.40	0.80	-0.0
importer GDP per capita importer population distance	1.09 1.13 -1.20	0.40 0.35 -0.68	0.80	-0.0 0.1
importer GDP per capita importer population distance	1.13 -1.20	0.40 0.35 -0.68	0.80 -0.62	-0.0 0.10

All variables are in logs. Standard errors in EF Appendix.

- The GDP per capita and population breakdown doesn't matter for for total trade. (Elasticities on each are similar to each other and about the same as for total GDP.)
- But higher GDP per capita is associated with a higher price margin in exporting (elasticity 0.10) and importing (elasticity 0.13)
- Could these effects be the result of product selection: Countries sell higher priced products to richer countries and countries buy higher priced products from richer countries?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The GDP per capita and population breakdown doesn't matter for for total trade. (Elasticities on each are similar to each other and about the same as for total GDP.)
- But higher GDP per capita is associated with a higher price margin in exporting (elasticity 0.10) and importing (elasticity 0.13)
- Could these effects be the result of product selection: Countries sell higher priced products to richer countries and countries buy higher priced products from richer countries?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

No.

- The GDP per capita and population breakdown doesn't matter for for total trade. (Elasticities on each are similar to each other and about the same as for total GDP.)
- But higher GDP per capita is associated with a higher price margin in exporting (elasticity 0.10) and importing (elasticity 0.13)
- Could these effects be the result of product selection: Countries sell higher priced products to richer countries and countries buy higher priced products from richer countries?
- No.
- The elasticities are the same or higher at the HS6 product level:

Price Regressions

Dependent variable is the price for each importer, exporter, and product.						
	pooled by	pooled by	pooled	income	Rauch (1999)	manufacturing
	exporter-product	importer-product	by product	interaction	differentiated	only
					productsb	
independent variable ↓	(1)	(2)	(3)	(4)	(5)	(6)
exporter GDP per capita	0.171		0.174	0.175	0.180	0.186
	(0.018)		(0.018)	(0.018)	(0.019)	(0.019)
	()		(,	(,	(,	()
exporter population	-0.043		-0.042	-0.042	-0.053	-0.053
	(0.023)		(0.022)	(0.022)	(0.025)	(0.025)
importer GDP per capita		0.116	0.121	0.127	0.136	0.125
		(0.013)	(0.013)	(0.012)	(0.013)	(0.013)
importer population		-0.016	-0.010	-0.011	-0.0028	-0.0036
		(0.013)	(0.012)	(0.012)	(0.014)	(0.013)
		0.400	0.005		0.000	0.075
distance	0.104	0.108	0.085	0.080	0.080	0.076
	(0.016)	(0.012)	(0.015)	(0.016)	(0.016)	(0.017)
sheetute difference in CDR ner conited				0.020		
absolute unierence in GDF per capita				(0.020		
				(0.013)		
product-exporter fixed effect	no	yes	no	no	no	no
product-importer fixed effect	yes	no	no	no	no	no
product fixed effect	no	no	yes	yes	yes	yes
R-squared	0.825	0.836	0.788	0.788	0.776	0.788
number of observations	4,552,967	4,552,967	4,552,967	4,552,967	3,165,101	2,554,996

Two Examples

bicycle hubs and spokes (HS871493)

baby garments (HS620990)

(日)

э

Extensive Margins: Products per Country

(日)

э

Note different scales in y-axes

Extensive Margins: Countries (out of 100) per Product

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exporters per HS6 product

mean: 65
10th percentile: 35
90th percentile: 91

Importers per HS6 product

mean: 84

10th percentile: 46

90th percentile: 100

Gravity, Market Share, and Market Size

Return to the basic gravity equation

$$X_{ni} = \frac{X_i \cdot X_n}{D_{ni}}$$

Posit that X_n is n's purchases from all countries, including n itself, so that:

$$X_n = \sum_i X_{ni}$$

• Define $\pi_{ni} = X_{ni}/X_n$ as *i*'s share of sales in market *n*

and decompose n's imports from i as:

$$X_{ni} = \pi_{ni} \cdot X_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

the product of market share and market size

Sellers, Buyers, and Relationships

From Eaton, Sam Kortum, and Francis Kramarz (2022) "Firm-to-Firm Trade"

French customs data on the sales of French firms to individual buyers in 24 other EU destinations in 2005, giving us, for each destination n:

number of French sellers	N _{nF}
number of local buyers	F_{nF}
buyers/seller	Ē _n F
sellers/buyer	Īs _n F
number of relationships	R_{nF}
sales/relationship	⊼ _{nF}

Some identities:

$$R_{nF} = N_{nF}\bar{b}_{nF} = F_{nF}\bar{s}_{nF}$$

$$X_{nF} = R_{nF}\bar{x}_{nF}$$

Some Regressions

Table: French Firm Entry into EU Destinations

	In R _{nF}	ln $ar{x}_{nF}$	In N _{nF}	In $ar{b}_{nF}$	In F _{nF}	In <i>s_{nF}</i>
constant	-2.80	2.80	-1.39	-1.41	-4.38	1.58
	(0.99)	(0.99)	(0.59)	(0.55)	(0.87)	(1.24)
market size	0.81	0.19	0.47	0.34	0.83	-0.02
	(0.06)	(0.06)	(0.04)	(0.03)	(0.05)	(0.01)
French market share	1.02	-0.02	0.64	0.38	0.85	0.17
	(0.19)	(0.19)	(0.11)	(0.11)	(0.17)	(0.05)
Number of Observations	24	24	24	24	24	24
R^2	0.92	0.33	0.91	0.86	0.93	0.40

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Relationships fully account for French market share (elasticity is 1.02)
- Relationships account for a 0.81 share of market size, with sales per relationship accounting for the rest: Larger markets have larger relationships!
- In either case, a little more than half the increase in relationships is accounted for by more French sellers, the rest by more buyers per seller
- In markets where the French market share is larger, a buyer has more French sellers.

II. Theoretical Foundations

Some Primitives

- Concepts behind a vast number of papers in international trade, spacial economics, growth,...
- Kortum, EK (various), Melitz, Buera and Oberfield,.....
- including two papers providing a theoretical explanation for the observations above, which we'll turn to next.
- The goal here is to show the deep connections among the distributions that show up repeatedly in this literature: the Pareto, Poisson, and Fréchet (with the binomial in between)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An Idea

- An idea for producing a good using inputs
- Efficiency: Output q per unit of inputs
- Pareto distribution of q:

$$\Pr\left[Q \le q\right] = \begin{array}{cc} 1 - \left(\frac{q}{q}\right)^{-\theta} & q \ge \underline{q} \\ 0 & q \le \underline{q} \end{array}$$

with shape parameter heta > 0 and location parameter q > 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some Properties of the Pareto Distribution I

Often convenient: the complementary or tail distribution:

$$\Pr\left[Q \ge q\right] = \begin{cases} \left(\frac{q}{q}\right)^{-\theta} & q \ge \underline{q} \\ 1 & q \le \underline{q} \end{cases}$$

The upper tail is Pareto with shape parameter θ wherever it's truncated from below (fractality)

The Pareto distribution is easy to integrate into economic models, and describes some types of data very well.

Some Properties of the Pareto Distribution II

Mean:

$$E[q] = \underline{q}^{ heta} heta \int_{\underline{q}}^{\infty} q^{- heta} dq = rac{ heta}{ heta-1} \underline{q}$$

defined only for $\theta>1$

Median:

$$.5 = \left(\frac{q_{med}}{\underline{q}}\right)^{-\theta}$$

so that:

$$q_{med} = 2^{1/\theta} \underline{q}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Both the mean and the median, when it exists, approach the lower bound q as θ → ∞. From Efficiency to Unit Costs

If a bundle of inputs costs w then the unit cost associated with an idea with quality q is

$$c = w/q$$

and the distribution of the associated unit cost is:

$$G(c) = \Pr[C \le c] = \Pr\left[Q \ge \frac{w}{c}\right] = \begin{cases} \left(\frac{c}{\bar{c}}\right)^{-\theta} & c \le \bar{c} \\ 1 & c \ge \bar{c} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\bar{c} = w/q$.

Putting in Space

- Say there are N locations labelled i, n = 1, ..., N each with a wage w_i separated by iceberg trade costs d_{ni}
- An idea with efficiency z in location i can deliver to n at unit cost:

$$c=\frac{w_id_{ni}}{z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Accumulation of Ideas

Say that N_i ideas have arrived at location i, each with quality drawn independently from the Pareto distribution above

Define

$$p_q = \left(rac{q}{\underline{q}}
ight)^{- heta}$$
 ,

the probability that an idea is better than q

► The number of ideas with quality at least q ≥ <u>q</u> is N_{i,q}, which is distributed binomially:

$$\Pr[N_{i,q} = n] = \binom{N_i}{n} p_q^n (1 - p_q)^{N_i - n}$$

The Expected Number of Good Ideas I

Define:

$$T_i = N_i q^{\theta}$$

which can remain finite as $N_i \rightarrow \infty$ by sending $\underline{q} \rightarrow 0$ \blacktriangleright Define:

$$\lambda_{i,q} = N_i p_q = T_i q^{-\theta}$$

the expected number of ideas with quality better than q, where $q \geq \underline{q}$

so that:

$$p_q = \frac{\lambda_{i,q}}{N_i}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Expected Number of Good Ideas II

Substitute into the probability above to get:

$$\Pr[N_{i,q} = n] = \frac{N_i!}{(N_i - n)!n!} p_q^n (1 - p_q)^{N_i - n}$$

$$= \frac{N_i!}{(N_i - n)!n!} \left(\frac{\lambda_{i,q}}{N_i}\right)^n \left(1 - \frac{\lambda_{i,q}}{N_i}\right)^{N_i - n}$$

$$= \frac{\lambda_{i,q}^n}{n!} \left(1 - \frac{\lambda_{i,q}}{N_i}\right)^{N_i} \left(1 - \frac{\lambda_{i,q}}{N_i}\right)^{-n} \frac{N_i}{N_i} \cdot \frac{N_i - 1}{N_i}$$

$$\cdot \dots \cdot \frac{N_i - n + 1}{N_i}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

From the Pareto and Binomial to the Poisson

Fixing λ_q and *n* the limit as $N_i \rightarrow \infty$ is:

$$\Pr\left[N_{i,q}=n\right] = \frac{\lambda_{i,q}^n}{n!}e^{-\lambda_{i,q}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the Poisson distribution with parameter $\lambda_{i,q} = T_i q^{-\theta}$

▶ Note that, by fixing λ_q and taking $N_i \to \infty$, we're taking $\underline{q}, p_q \to 0$

Back to Space

The number of ideas from *i* that deliver to *n* at unit cost $C \le c$ is the number with $Q \ge w_i d_{ni}/c$ which is distributed Poison with parameter:

$$\Phi_{ni}c^{ heta}$$

where:

$$\Phi_{ni}=T_i\left(w_id_{ni}\right)^{-\theta}$$

► The number of ideas that can deliver to *n* from anywhere at a unit cost C ≤ c is distributed Poisson with parameter

$$\Phi_n = \sum_i \Phi_{ni}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Distribution of Order Statistics I

Consider ideas in terms of their order according to efficiency:

$$Q^{(1)} > Q^{(2)} > Q^{(3)} > \dots$$

and their corresponding unit cost

$$C^{(k)} = \frac{w}{Q^{(k)}}$$

so that:

$$C^{(1)} < C^{(2)} < C^{(3)} < \dots$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Distribution of Order Statistics II

From the Poisson, the distribution of the kth best idea $Q^{(k)}$ is:

$$\Pr[Q^{(k)} \le q] = e^{-Tq^{-\theta}} \sum_{i=0}^{k-1} \frac{(Tq^{-\theta})^i}{i!}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

that is, the probability that **at most** k - 1 ideas exceed q.

From the Poisson to the Fréchet

Of particular interest is the distribution of the best idea

$$\mathsf{Pr}[Q^{(1)} \leq q] = e^{-Tq^{- heta}}$$

i.e., the probability that no idea has quality better than q, giving us the type II extreme value or the Fréchet distribution.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Distribution of Unit Costs

• The corresponding distribution of the kth lowest cost $C^{(k)}$ is:

$$G^{(k)}(c) = \Pr[C^{(k)} \le c] = 1 - e^{-\Phi c^{\theta}} \sum_{i=0}^{k-1} \frac{(\Phi c^{\theta})^{i}}{i!},$$

that is, one minus the probability that **any** of the lowest k - 1 costs exceed c.

• Of particular interest is the distribution of the lowest cost $C^{(1)}$

$$\Pr[C^{(1)} \le c] = \Pr[Q^{(1)} \ge c/w] = 1 - e^{-\Phi c^{\theta}}$$

▶ and the second lowest cost $C^{(2)}$

$$\begin{aligned} \mathsf{Pr}[\mathcal{C}^{(2)} &\leq c] &= \mathsf{Pr}[\mathcal{Q}^{(2)} \geq c/w] \\ &= 1 - e^{-\Phi c^{\theta}} - \Phi c^{\theta} e^{-\Phi c^{\theta}} \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○