JIE Summer School

Lecture 3A:
 Some Observational and Theoretical Foundations

Jonathan Eaton
Pennsylvania State University

15 June 2023

I. Observational Foundations

The Gravity Equation in Trade

- The observation that exports to country n from country $i, X_{n i}$ is well described by the equation:

$$
X_{n i}=\frac{X_{i} \cdot X_{n}}{D_{n i}}
$$

where X_{j} is some measure of the "mass" of country j and $D_{n i}$ captures "bilateral resistance" between them

- In standard applications the mass of country j is captured by its GDP and $D_{n i}$ by the distance between n and i.
- Origins: Isard (1954), Tinbergen (1962), ...
- Theoretical foundations: Anderson (1979), Eaton and Kortum (2002), Anderson and Van Wincoop (2003), Melitz (2003)-Chaney (2008),...

Gravity and Merchandise Trade

From Eaton and Cecília Fieler (2022) "The Margins of Trade":

- UN COMTRADE bilateral trade data for 100 Countries in HS6 products in 2007
- US\$ values $X_{\text {nik }}$ of imports by n from i of product k
- units (weight, usually, or counts) $Q_{\text {nik }}$ of imports by n from i of product k
- allowing us to infer unit values (prices) $p_{n i k}=X_{n i k} / Q_{n i k}$
- World Bank: GDP and GDP per capita
- CEPII: distance and other bilateral indicators

The Basic Regression

dependent variable \rightarrow	value	(s.e.)
exporter GDP	1.356	(0.054)
importer GDP	1.110	(0.034)
distance	-1.190	(0.083)
R-squared	0.670	
number of observations	9,479	
All variables are in logs.		

Dissecting Gravity

- A huge amount of work has been done on the econometrics of the gravity equation and how it relates to theory
- For today, let's accept that the gravity equation is a robust relationship connecting aggregate trade, GDP, and distance
- So if we break down aggregate trade and total GDP into various pieces, we can ask how the individual pieces contribute to gravity.

The Margins of GDP

- Define y_{i} as per capita income and L_{i} as population
- so that

$$
\log G D P_{i}=\log y_{i}+\log L_{i}
$$

The Margins of Trade

Expanding on Hummels and Klenow (2005):

- Extensive margin

$$
E_{n i}=\frac{\text { number of products exported to } n \text { from } i}{\text { total number of products in data }}
$$

- Price is an impoter-exporter fixed effect $\log P_{n i}$ in the regression:

$$
\log p_{n i k}=\log P_{n i}+\delta_{k}+\epsilon_{n i k}
$$

where $p_{\text {nik }}$ is the unit value of country n 's imports from country i in product k and δ_{k} are product fixed effects

- Quantity

$$
\log Q_{n i}=\log X_{n i}-\log E_{n i}-\log P_{n i}
$$

$X_{n i}$ is the value of the trade flow from i to n

Gravity on the Margins

	extensive			
dependent variable \rightarrow	value	margin	quantity	price
exporter GDP	1.36	0.88	0.45	0.03
importer GDP	1.11	0.40	0.66	0.05
distance	-1.19	-0.72	-0.51	0.03
	1.35	0.92	0.33	0.10
exporter GDP per capita	1.36	0.85	0.55	-0.03
exporter population	1.09	0.46	0.51	0.13
importer GDP per capita	1.13	0.35	0.80	-0.02
importer population	-1.20	-0.68	-0.62	0.10
distance				
number of observations	9,479	9,479	9,479	9,479

All variables are in logs. Standard errors in EF Appendix.

Takeaways

- The GDP per capita and population breakdown doesn't matter for for total trade. (Elasticities on each are similar to each other and about the same as for total GDP.)
- But higher GDP per capita is associated with a higher price margin in exporting (elasticity 0.10) and importing (elasticity 0.13)
- Could these effects be the result of product selection: Countries sell higher priced products to richer countries and countries buy higher priced products from richer countries?

Takeaways

- The GDP per capita and population breakdown doesn't matter for for total trade. (Elasticities on each are similar to each other and about the same as for total GDP.)
- But higher GDP per capita is associated with a higher price margin in exporting (elasticity 0.10) and importing (elasticity 0.13)
- Could these effects be the result of product selection: Countries sell higher priced products to richer countries and countries buy higher priced products from richer countries?
- No.

Takeaways

- The GDP per capita and population breakdown doesn't matter for for total trade. (Elasticities on each are similar to each other and about the same as for total GDP.)
- But higher GDP per capita is associated with a higher price margin in exporting (elasticity 0.10) and importing (elasticity 0.13)
- Could these effects be the result of product selection: Countries sell higher priced products to richer countries and countries buy higher priced products from richer countries?
- No.
- The elasticities are the same or higher at the HS6 product level:

Price Regressions

Dependent variable is the price for each importer, exporter, and product.

independent variable \downarrow	pooled by exporter-product (1)	pooled by importer-product (2)	pooled by product (3)	income interaction (4)	Rauch (1999) differentiated products ${ }^{b}$ (5)	manufacturing only (6)
exporter GDP per capita	$\begin{gathered} 0.171 \\ (0.018) \end{gathered}$		$\begin{gathered} 0.174 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.175 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.180 \\ (0.019) \end{gathered}$	$\begin{gathered} 0.186 \\ (0.019) \end{gathered}$
exporter population	$\begin{gathered} -0.043 \\ (0.023) \end{gathered}$		$\begin{gathered} -0.042 \\ (0.022) \end{gathered}$	$\begin{gathered} -0.042 \\ (0.022) \end{gathered}$	$\begin{gathered} -0.053 \\ (0.025) \end{gathered}$	$\begin{array}{r} -0.053 \\ (0.025) \end{array}$
importer GDP per capita		$\begin{gathered} 0.116 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.121 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.127 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.136 \\ (0.013) \end{gathered}$	$\begin{array}{r} 0.125 \\ (0.013) \end{array}$
importer population		$\begin{gathered} -0.016 \\ (0.013) \end{gathered}$	$\begin{gathered} -0.010 \\ (0.012) \end{gathered}$	$\begin{gathered} -0.011 \\ (0.012) \end{gathered}$	$\begin{aligned} & -0.0028 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0.0036 \\ & (0.013) \end{aligned}$
distance	$\begin{gathered} 0.104 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.108 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.085 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.076 \\ (0.017) \end{gathered}$
absolute difference in GDP per capita ${ }^{\text {a }}$				$\begin{gathered} 0.020 \\ (0.013) \end{gathered}$		
product-exporter fixed effect	no	yes	no	no	no	no
product-importer fixed effect	yes	no	no	no	no	no
product fixed effect	no	no	yes	yes	yes	yes
R-squared number of observations	$\begin{gathered} 0.825 \\ 4,552,967 \end{gathered}$	$\begin{gathered} 0.836 \\ 4,552,967 \end{gathered}$	$\begin{gathered} 0.788 \\ 4,552,967 \end{gathered}$	$\begin{gathered} 0.788 \\ 4,552,967 \end{gathered}$	$\begin{gathered} 0.776 \\ 3,165,101 \end{gathered}$	$\begin{gathered} 0.788 \\ 2,554,996 \end{gathered}$

Two Examples

(a) HS871493
bicycle hubs and spokes (HS871493)

(b) HS620990
baby garments (HS620990)

Extensive Margins: Products per Country

Note different scales in y-axes

Extensive Margins: Countries (out of 100) per Product

- Exporters per HS6 product
- mean: 65
- 10th percentile: 35
- 90th percentile: 91
- Importers per HS6 product
- mean: 84
- 10th percentile: 46
- 90th percentile: 100

Gravity, Market Share, and Market Size

- Return to the basic gravity equation

$$
X_{n i}=\frac{X_{i} \cdot X_{n}}{D_{n i}}
$$

- Posit that X_{n} is n 's purchases from all countries, including n itself, so that:

$$
X_{n}=\sum_{i} X_{n i}
$$

- Define $\pi_{n i}=X_{n i} / X_{n}$ as i 's share of sales in market n
- and decompose n 's imports from i as:

$$
X_{n i}=\pi_{n i} \cdot X_{n}
$$

the product of market share and market size

Sellers, Buyers, and Relationships

From Eaton, Sam Kortum, and Francis Kramarz (2022) "Firm-to-Firm Trade"

- French customs data on the sales of French firms to individual buyers in 24 other EU destinations in 2005, giving us, for each destination n :

number of French sellers	$N_{n F}$
number of local buyers	$F_{n F}$
buyers/seller	$\bar{b}_{n F}$
sellers/buyer	$\bar{s}_{n F}$
number of relationships	$R_{n F}$
sales/relationship	$\bar{x}_{n F}$

- Some identities:

$$
\begin{gathered}
R_{n F}=N_{n F} \bar{b}_{n F}=F_{n F} \bar{s}_{n F} \\
X_{n F}=R_{n F} \bar{x}_{n F}
\end{gathered}
$$

Some Regressions

Table: French Firm Entry into EU Destinations

	$\ln R_{n F}$	$\ln \bar{x}_{n F}$	$\ln N_{n F}$	$\ln \bar{b}_{n F}$	$\ln F_{n F}$	$\ln \bar{s}_{n F}$
constant	-2.80	2.80	-1.39	-1.41	-4.38	1.58
	(0.99)	(0.99)	(0.59)	(0.55)	(0.87)	(1.24)
market size	0.81	0.19	0.47	0.34	0.83	-0.02
	(0.06)	(0.06)	(0.04)	(0.03)	(0.05)	(0.01)
French market share	1.02	-0.02	0.64	0.38	0.85	0.17
	(0.19)	(0.19)	(0.11)	(0.11)	(0.17)	(0.05)
Number of Observations	24	24	24	24	24	24
R^{2}	0.92	0.33	0.91	0.86	0.93	0.40

Takeaways

- Relationships fully account for French market share (elasticity is 1.02)
- Relationships account for a 0.81 share of market size, with sales per relationship accounting for the rest: Larger markets have larger relationships!
- In either case, a little more than half the increase in relationships is accounted for by more French sellers, the rest by more buyers per seller
- In markets where the French market share is larger, a buyer has more French sellers.

II. Theoretical Foundations

Some Primitives

- Concepts behind a vast number of papers in international trade, spacial economics, growth,...
- Kortum, EK (various), Melitz, Buera and Oberfield,.....
- including two papers providing a theoretical explanation for the observations above, which we'll turn to next.
- The goal here is to show the deep connections among the distributions that show up repeatedly in this literature: the Pareto, Poisson, and Fréchet (with the binomial in between)

An Idea

- An idea for producing a good using inputs
- Efficiency: Output q per unit of inputs
- Pareto distribution of q :

$$
\operatorname{Pr}[Q \leq q]=\begin{array}{cl}
1-\left(\frac{q}{q}\right)^{-\theta} & q \geq \underline{q} \\
0 & q \leq \underline{q}
\end{array}
$$

with shape parameter $\theta>0$ and location parameter $\underline{q}>0$

Some Properties of the Pareto Distribution I

- Often convenient: the complementary or tail distribution:

$$
\operatorname{Pr}[Q \geq q]=\left\{\begin{array}{rl}
\left(\frac{q}{q}\right)^{-\theta} & q \geq \underline{q} \\
1 & q \leq \underline{q}
\end{array}\right.
$$

- The upper tail is Pareto with shape parameter θ wherever it's truncated from below (fractality)
- The Pareto distribution is easy to integrate into economic models, and describes some types of data very well.
- For low θ, it has a "fat tail".

Some Properties of the Pareto Distribution II

- Mean:

$$
E[q]=\underline{q}^{\theta} \theta \int_{\underline{q}}^{\infty} q^{-\theta} d q=\frac{\theta}{\theta-1} \underline{q}
$$

defined only for $\theta>1$

- Median:

$$
.5=\left(\frac{q_{m e d}}{\underline{q}}\right)^{-\theta}
$$

so that:

$$
q_{\text {med }}=2^{1 / \theta} \underline{q}
$$

- Both the mean and the median, when it exists, approach the lower bound \underline{q} as $\theta \rightarrow \infty$.

From Efficiency to Unit Costs

- If a bundle of inputs costs w then the unit cost associated with an idea with quality q is

$$
c=w / q
$$

and the distribution of the associated unit cost is:

$$
G(c)=\operatorname{Pr}[C \leq c]=\operatorname{Pr}\left[Q \geq \frac{w}{c}\right]=\left\{\begin{array}{rl}
\left(\frac{c}{\bar{c}}\right)^{-\theta} & c \leq \bar{c} \\
1 & c \geq \bar{c}
\end{array}\right.
$$

where $\bar{c}=w / \underline{q}$.

Putting in Space

- Say there are N locations labelled $i, n=1, \ldots, N$ each with a wage w_{i} separated by iceberg trade costs $d_{n i}$
- An idea with efficiency z in location i can deliver to n at unit cost:

$$
c=\frac{w_{i} d_{n i}}{z}
$$

The Accumulation of Ideas

- Say that N_{i} ideas have arrived at location i, each with quality drawn independently from the Pareto distribution above
- Define

$$
p_{q}=\left(\frac{q}{q}\right)^{-\theta}
$$

the probability that an idea is better than q

- The number of ideas with quality at least $q \geq \underline{q}$ is $N_{i, q}$, which is distributed binomially:

$$
\operatorname{Pr}\left[N_{i, q}=n\right]=\binom{N_{i}}{n} p_{q}^{n}\left(1-p_{q}\right)^{N_{i}-n}
$$

The Expected Number of Good Ideas I

- Define:

$$
T_{i}=N_{i} \underline{q}^{\theta}
$$

which can remain finite as $N_{i} \rightarrow \infty$ by sending $\underline{q} \rightarrow 0$

- Define:

$$
\lambda_{i, q}=N_{i} p_{q}=T_{i} q^{-\theta}
$$

the expected number of ideas with quality better than q, where $q \geq \underline{q}$

- so that:

$$
p_{q}=\frac{\lambda_{i, q}}{N_{i}}
$$

The Expected Number of Good Ideas II

- Substitute into the probability above to get:

$$
\begin{aligned}
\operatorname{Pr}\left[N_{i, q}=n\right]= & \frac{N_{i}!}{\left(N_{i}-n\right)!n!} p_{q}^{n}\left(1-p_{q}\right)^{N_{i}-n} \\
= & \frac{N_{i}!}{\left(N_{i}-n\right)!n!}\left(\frac{\lambda_{i, q}}{N_{i}}\right)^{n}\left(1-\frac{\lambda_{i, q}}{N_{i}}\right)^{N_{i}-n} \\
= & \frac{\lambda_{i, q}^{n}}{n!}\left(1-\frac{\lambda_{i, q}}{N_{i}}\right)^{N_{i}}\left(1-\frac{\lambda_{i, q}}{N_{i}}\right)^{-n} \frac{N_{i}}{N_{i}} \cdot \frac{N_{i}-1}{N_{i}} \\
& \cdots \ldots \cdot \frac{N_{i}-n+1}{N_{i}}
\end{aligned}
$$

From the Pareto and Binomial to the Poisson

- Fixing λ_{q} and n the limit as $N_{i} \rightarrow \infty$ is:

$$
\operatorname{Pr}\left[N_{i, q}=n\right]=\frac{\lambda_{i, q}^{n}}{n!} e^{-\lambda_{i, q}}
$$

the Poisson distribution with parameter $\lambda_{i, q}=T_{i} q^{-\theta}$

- Note that, by fixing λ_{q} and taking $N_{i} \rightarrow \infty$, we're taking $\underline{q}, p_{q} \rightarrow 0$

Back to Space

- The number of ideas from i that deliver to n at unit cost $C \leq c$ is the number with $Q \geq w_{i} d_{n i} / c$ which is distributed Poison with parameter:

$$
\Phi_{n i} c^{\theta}
$$

where:

$$
\Phi_{n i}=T_{i}\left(w_{i} d_{n i}\right)^{-\theta}
$$

- The number of ideas that can deliver to n from anywhere at a unit cost $C \leq c$ is distributed Poisson with parameter

$$
\Phi_{n}=\sum_{i} \Phi_{n i}
$$

The Distribution of Order Statistics I

- Consider ideas in terms of their order according to efficiency:

$$
Q^{(1)}>Q^{(2)}>Q^{(3)}>\ldots
$$

and their corresponding unit cost

$$
C^{(k)}=\frac{w}{Q^{(k)}}
$$

so that:

$$
C^{(1)}<C^{(2)}<C^{(3)}<\ldots
$$

The Distribution of Order Statistics II

- From the Poisson, the distribution of the k th best idea $Q^{(k)}$ is:

$$
\operatorname{Pr}\left[Q^{(k)} \leq q\right]=e^{-T q^{-\theta}} \sum_{i=0}^{k-1} \frac{\left(T q^{-\theta}\right)^{i}}{i!}
$$

that is, the probability that at most $k-1$ ideas exceed q.

From the Poisson to the Fréchet

- Of particular interest is the distribution of the best idea

$$
\operatorname{Pr}\left[Q^{(1)} \leq q\right]=e^{-T q^{-\theta}}
$$

i.e., the probability that no idea has quality better than q, giving us the type II extreme value or the Fréchet distribution.

The Distribution of Unit Costs

- The corresponding distribution of the k th lowest cost $C^{(k)}$ is:

$$
G^{(k)}(c)=\operatorname{Pr}\left[C^{(k)} \leq c\right]=1-e^{-\Phi c^{\theta}} \sum_{i=0}^{k-1} \frac{\left(\Phi c^{\theta}\right)^{i}}{i!}
$$

that is, one minus the probability that any of the lowest $k-1$ costs exceed c.

- Of particular interest is the distribution of the lowest cost $C^{(1)}$

$$
\operatorname{Pr}\left[C^{(1)} \leq c\right]=\operatorname{Pr}\left[Q^{(1)} \geq c / w\right]=1-e^{-\Phi c^{\theta}}
$$

- and the second lowest cost $C^{(2)}$

$$
\begin{aligned}
\operatorname{Pr}\left[C^{(2)}\right. & \leq c]=\operatorname{Pr}\left[Q^{(2)} \geq c / w\right] \\
& =1-e^{-\Phi c^{\theta}}-\Phi c^{\theta} e^{-\Phi c^{\theta}}
\end{aligned}
$$

