Inflation and U.S. Monetary Policy Transmission: At Home and Abroad

Şebnem Kalemli-Özcan University of Maryland, CEPR, NBER

June 2023

Key Questions: Sources of Inflation and Transmission of U.S. Monetary Policy

- 1. Sectoral shocks, financial frictions and heterogeneity
- 2. Micro-macro approach for identification and policy implications What is the optimal policy response of other countries? Fragmentation/Coordination?

Key Questions: Sources of Inflation and Transmission of U.S. Monetary Policy

1. Sectoral shocks, financial frictions and heterogeneity

2. Micro-macro approach for identification and policy implications What is the optimal policy response of other countries? Fragmentation/Coordination?

Current Inflation:

- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, ECB-Sintra'22 "Global Supply Chain Pressures, Trade, and Inflation"
- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, AER P&P'23a "Quantifying the Inflationary Impact of Fiscal Stimulus"
- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, NBER WP forthcoming'23b "The Inflationary Implications of Sectoral Shock Transmission across the Global Production Network"

1. Sectoral shocks, financial frictions and heterogeneity

2. Micro-macro approach for identification and policy implications What is the optimal policy response of other countries? Fragmentation/Coordination?

Current Inflation:

- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, ECB-Sintra'22 "Global Supply Chain Pressures, Trade, and Inflation"
- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, AER P&P'23a "Quantifying the Inflationary Impact of Fiscal Stimulus"
- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, NBER WP forthcoming'23b "The Inflationary Implications of Sectoral Shock Transmission across the Global Production Network"

International Spillovers of MP:

- Kalemli-Ozcan, Jackson Hole Symposium'19 "U.S. Monetary Policy and International Risk Spillovers"
- diGiovanni, Kalemli-Ozcan, Ulu, Baskaya'21 RESTUD "International Spillovers and Local Credit Cycles"
- Kalemli-Ozcan and Varela, NBER WP "Five Facts about UIP Premium"
- Akinci, Kalemli-Ozcan, and Queralto.NBER WP "Uncertainty Shocks, Capital Flows, and International Risk Spillovers"
- Pierre de Leo, Gita Gopinath and Kalemli-Ozcan, NBER WP "Monetary Policy Cyclicality in EM"

1. Sectoral shocks, financial frictions and heterogeneity

2. Micro-macro approach for identification and policy implications What is the optimal policy response of other countries? Fragmentation/Coordination?

Current Inflation:

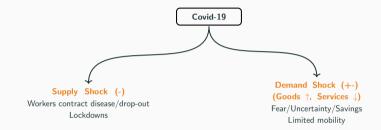
- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, ECB-Sintra'22 "Global Supply Chain Pressures, Trade, and Inflation"
- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, AER P&P'23a "Quantifying the Inflationary Impact of Fiscal Stimulus"
- diGiovanni, Kalemli-Ozcan, Silva, Yildirim, NBER WP forthcoming'23b "The Inflationary Implications of Sectoral Shock Transmission across the Global Production Network"

International Spillovers of MP:

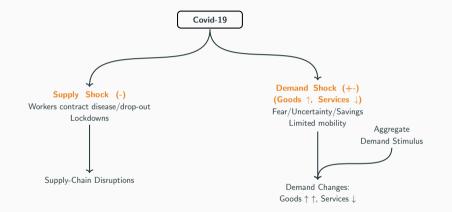
- Kalemli-Ozcan, Jackson Hole Symposium'19 "U.S. Monetary Policy and International Risk Spillovers"
- diGiovanni, Kalemli-Ozcan, Ulu, Baskaya'21 RESTUD "International Spillovers and Local Credit Cycles"
- Kalemli-Ozcan and Varela, NBER WP "Five Facts about UIP Premium"
- Akinci, Kalemli-Ozcan, and Queralto.NBER WP "Uncertainty Shocks, Capital Flows, and International Risk Spillovers"
- Pierre de Leo, Gita Gopinath and Kalemli-Ozcan, NBER WP "Monetary Policy Cyclicality in EM"

Domestic Transmission of MP:

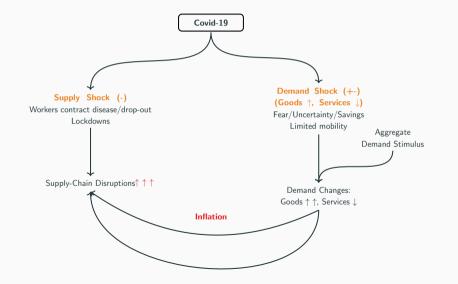
• Caglio, Darst, Kalemli-Ozcan, NBER WP "Collateral Heterogeneity and Monetary Policy Transmission"

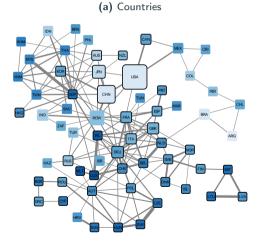

Current Events

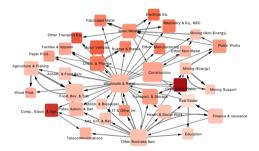
• Countries around the world have witnessed the highest inflation of the last four decades


- Countries around the world have witnessed the highest inflation of the last four decades
- Driven by large swings in economic activity over time and across sectors over Covid-19:
 - Collapse and rebound in domestic demand, GDP, and international trade
 - Consumption substitution across sectors (goods for services and back)
 - Labor shortages across sectors/countries (pandemic/lockdowns and recovery)

- Countries around the world have witnessed the highest inflation of the last four decades
- Driven by large swings in economic activity over time and across sectors over Covid-19:
 - Collapse and rebound in domestic demand, GDP, and international trade
 - Consumption substitution across sectors (goods for services and back)
 - Labor shortages across sectors/countries (pandemic/lockdowns and recovery)
- Global supply chains played a critical role in amplifying shocks within and across borders
- \Rightarrow Macro/central banks "woke up" to importance of supply shocks and production resilience
- \Rightarrow Future risks: geopolitical, climate change, fragmentation of production


SECTORAL Supply-Demand Imbalances \uparrow on a Global Scale During 2020–2021


SECTORAL Supply-Demand Imbalances \uparrow on a Global Scale During 2020–2021


SECTORAL Supply-Demand Imbalances \uparrow on a Global Scale During 2020–2021

SECTORAL imbalances amplified via global trade and production network

(b) Industries

• Theory-closed: Inflation, Production Networks, Sectoral Demand and Supply Shocks

Baqaee and Farhi (2022), La'O and Tahbaz-Salehi (2022), Rubbo (2022), Afrouzi and Bhattarai (2022), Pasten, Schoenle, and Weber (2020)

Theory-closed/open: Inflation, Demand and Supply Shocks

Guerrieri, Lorenzoni, Straub, and Werning (2021, 2022), Amiti, Heise, Karahan, and Sahin (2022), Ferrante, Graves, and Iacovello (2022)

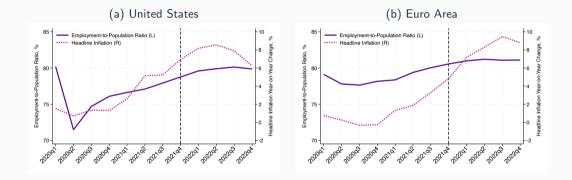
• Theory-open

• Production Networks and Trade with Supply Shocks

Bonadio, Huo, Levchenko, and Pandalai-Nayar (2021), Boehm and Pandalai-Nayar (2022)

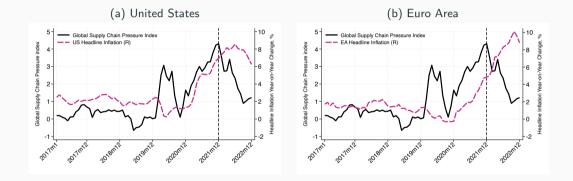
• Production Networks and Trade with Demand and Supply Shocks

Çakmaklı, Demiralp, Kalemli-Özcan, Yeşiltaş, Yıldırım (2022), Gourinchas, Kalemli-Özcan, Penciakova, Sander (2021)

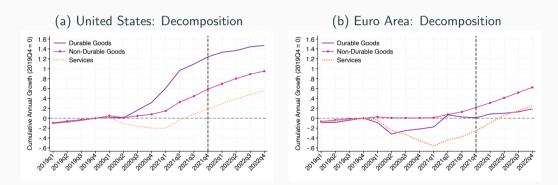

• Existing Empirical Work on Inflation: Reduced form regressions, VAR sign restrictions

Jorda, Liu, Nechio, and Rivera-Reyes (2022), LaBelle and Santacreu (2022), Shapiro (2022) ...

⇒ Our contribution: a structural model with unrestricted I-O linkages and elasticities of substitution to quantify inflation drivers during Covid-19 collapse and recovery

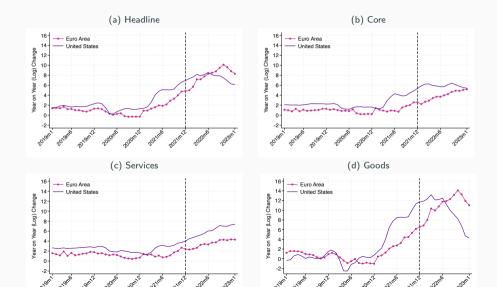

Stylized Facts

Simultaneous slack and inflation



Source: FRED

Simultaneous increase in inflation and supply chain pressures



Source: FRBNY, FRED.

Notes: Seasonally-adjusted real private consumption. Source: OECD Quarterly National Accounts.

Inflation in goods picked up earlier than inflation in services

10 / 60

Model

- We build on Baqaee and Farhi (2022) w/simplifications:
 - Two-period multicountry model $(n = 1, \dots, C)$
 - Ricardian households with perfect foresight
 - Multiple sectors ($i=1,\ldots,\mathcal{J}$) produce using factors and intermediate inputs
 - Perfect competition in factors and good markets
 - Downward nominal wage rigidity + sector-specific labor, zero-lower bound
- Model allows for rich set of shocks:
 - Country level aggregate demand
 - Country-sector demand shifts
 - Country-sector factor supply and productivity (including energy shocks eventually...)

Households

Inter-temporal maximization problem

$$\max_{C_{n,0},C_{n,*}\}} (1-\beta_n) \log U(C_{n,0}) + \beta_n \log U(C_{n,*})$$
s.t.

$$P_{n,0}C_{n,0} + \frac{P_{n,*}C_{n,*}}{1+i_n} = I_{n,0} + \frac{I_{n,*}}{1+i_n}$$

$$U(C_n) = \frac{C_n^{1-\sigma} - 1}{1 - \sigma}; \qquad C_n = \prod_{j=1}^{\mathcal{J}} C_{nj}^{\Omega_{nj}}, \quad \sum_{j=1}^{\mathcal{J}} \Omega_{nj} = 1$$
$$C_{nj} = \left[\sum_{m=1}^{\mathcal{C}} \Omega_{nj,m} X_{nj,m}^{\frac{1-\varepsilon}{\varepsilon}}\right]^{\frac{\varepsilon}{1-\varepsilon}}$$

Note: Future variables (denoted by *) are exogenous

Cost minimization

$$\begin{split} \min_{\{VA_{ni}, M_{ni}\}} P_{ni}^{VA} VA_{ni} + P_{ni}^{M} M_{ni} \\ \text{s.t.} \\ Y_{ni} = A_{ni} \left[\Omega_{ni, VA} VA_{ni}^{\frac{1-\theta}{\theta}} + \Omega_{ni, M} M_{ni}^{\frac{1-\theta}{\theta}} \right]^{\frac{\theta}{1-t}} \end{split}$$

$$VA_{ni} = \left[\Omega_{niVA,L}L_{ni}^{\frac{1-\gamma}{\gamma}} + \Omega_{niVA,K}\overline{K}_{ni}^{\frac{1-\gamma}{\gamma}}\right]^{\frac{\gamma}{1-\gamma}}$$

Intermediate goods' aggregation

Across sectors:
$$M_{ni} = \left[\sum_{j=1}^{\mathcal{J}} \Omega_{nj,i} X_{nj}^{\frac{1-\epsilon}{\epsilon}}\right]^{\frac{\epsilon}{1-\epsilon}}$$
 Across countries: $X_{nj} = \left[\sum_{m=1}^{\mathcal{C}} \Omega_{nj,m} X_{nj,m}^{\frac{1-\epsilon}{\epsilon}}\right]^{\frac{\epsilon}{1-\epsilon}}$

 $13 \, / \, 60$

• Goods market clearing: for each country *n* sector *i*:

$$Y_{ni} = \sum_{m \in \mathcal{C}} X_{mi,r}$$

• Segmented labor markets: the labor market in country *n*, sector *i*, with wage *W*_{ni} in *local currency*, satisfies

$$\overline{L}_{ni} \ge L_{ni}, \qquad W_{ni} \ge \overline{W}_{ni}, \qquad \left(\overline{L}_{ni} - L_{ni}\right) \left(W_{ni} - \overline{W}_{ni}\right) = 0$$

• Segmented capital markets with no price rigidities:

$$K_{ni} = \overline{K}_n$$

- Monetary policy: assume all countries at zero-lower bound (i = 0)
- Inter-temporal budget constraint becomes:

$$P_{n,0}C_{n,0} + P_{n,*}C_{n,*} = I_{n,0} + I_{n,*}$$

- Set $P_{n,*} = 1$ and $I_{n,*}$ to the steady-state expenditure level
- Inter-temporal optimization yields:

$$I_{n,0} = P_{n,0}C_{n,0} = \frac{1-\beta_n}{\beta_n}I_{n,*}$$

 Note that the aggregate shock is driven by a change in β_n. Corresponding expenditure is given in local currencies. • At the world level: Expenditure = GDP, but for individual countries: $I_n \neq \text{GDP}_n$

$$I_n = \text{GDP}_n + \underbrace{\text{Imports}_n - \text{Exports}_n}_{-\text{Current Account}}$$

• Define bilateral trade balance between countries *m* and *n* as:

1

$$D_{nm} \equiv \mathsf{Exports}_{m \to n} - \mathsf{Exports}_{n \to m}$$

• Assume that the bilateral trade balance is financed by the ownership of factors / industries of country *m* in country *n*:

$$\chi_{nm} \equiv egin{cases} rac{D_{nm}}{{
m GDP}_m} & ext{if } D_{nm} > 0 \\ 0 & ext{otherwise} \end{cases}$$

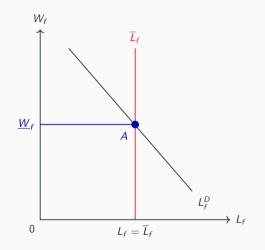
• Then the total income of country *n* is:

$$I_n = \text{GDP}_n - \underbrace{\sum_{m} \chi_{mn} \text{GDP}_n}_{\text{Factors owned by foreigners in } n} + \underbrace{\sum_{m} \chi_{nm} \text{GDP}_m}_{\text{Factors owned abroad by } n}$$

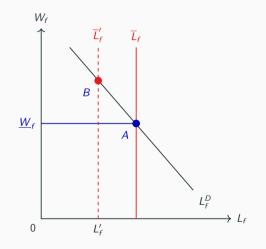
• In terms of factor income, the GDP of country n can be written as:

$$\mathsf{GDP}_n = \sum_i (W_{ni} L_{ni} + R_{ni} \overline{K}_{ni})$$

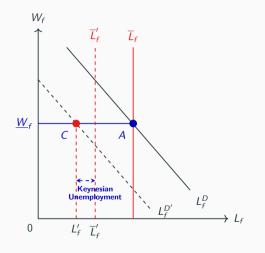
- This is given in the common world currency. Hence the income of country *n* is given in the common currency
- We know the expenditure in the local currency from the inter-temporal budget constraint
- The exchange rate of country *n* is then:

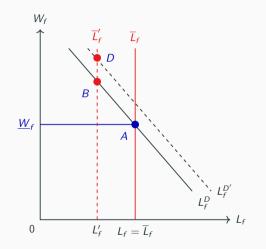

$$e_n \equiv \frac{\text{Local currency Income}}{\text{Common currency Income}} = \frac{(1 - \beta_n)I_n/\beta_n}{(1 - \sum_m \chi_{mn})\text{GDP}_n + \sum_m \chi_{nm}\text{GDP}_m}$$

• Downward wage limit is given in the local currency but the wage the model solves is in common currency. Therefore, the downward wage rigidity is given by:


$$e_n W_{ni} \geq \overline{W}_{ni} \Rightarrow W_{ni} \geq \frac{\overline{W}_{ni}}{e_n}$$

- Calibrate the model with ICIO 2018 Table from OECD
 - Final use shares
 - Input shares
 - Value added shares
 - Expenditures
- Normalize all prices, wages and rents to 1 at steady state
- From this stable equilibrium introduce shocks
- AMPL / Knitro optimizer
- Calculate the relative changes in common currency
- Convert the common currency price changes to local currency by multiplying with the model-consistent exchange rate


*L*_f: Potential level for factor *f*. Decrease due to sick workers, shutdowns, etc.


*L*_f: Potential level for factor *f*. Decrease due to sick workers, shutdowns, etc.

- \overline{L}_f : Potential level for factor f. Decrease due to sick workers, shutdowns, etc.
- L_f: Equilibrium employment level for factor f
 - Demand effects+downward wage rigidity
 ⇒ workers employed might be lower than potential
- Difference between \overline{L}_f and L_f : Keynesian unemployment

- \overline{L}_f : Potential level for factor f. Decrease due to sick workers, shutdowns, etc.
- L_f: Equilibrium employment level for factor f
 - Demand effects+downward wage rigidity
 ⇒ workers employed might be lower than potential
- Difference between \overline{L}_f and L_f : Keynesian unemployment
- During recovery point D: where these unemployment gaps are closed (heterogeneous across sectors, may not be back to 2019 but still inflationary)

Domar Weights:

CPL

$$\lambda_{i} \equiv \frac{P_{i}Y_{i}}{GDP} \quad \text{and} \quad \Lambda_{f} \equiv \frac{W_{f}L_{f}}{GDP}$$
$$d \log CPI = \underbrace{d \log \zeta}_{\text{Domestic AD shock}} - \mathbf{\Lambda}^{T} d \log \mathbf{L} - \mathbf{\lambda}^{T} d \log \mathbf{A}$$

- Same result as in Baqaee & Farhi (2022)
- Relative strength of sector-level labor or productivity shocks determined by the influence vector of sector-level factor or output shares, respectively
- Note that the sectoral demand shifts cancel out in the first-order approximation

• We can relate the final consumption to production via global Leontieff inverse (Ψ). Denote the total output of all industries globally with Y, the total consumption of all industries with C, then:

$$Y = \Psi C$$

• Denote the consumption of country *n* in all industries globally with *Cⁿ* and assign the portion of production to country *n* by

$$Y^n = \Psi C^n$$

• Write the local Domar weights for country *n* using Y_{mi}^{n} :

$$\lambda_{mi}^n \equiv \frac{P_{mi}Y_{mi}^n}{I_n}$$

Factor shares are governed by Ω^F .

We can define country-level Domar weights for all factors globally as: $\Lambda^n\equiv (\Omega^F)^T\lambda^n$

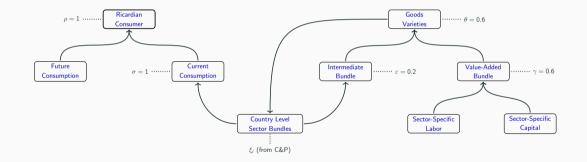
Then the CPI in country n can be written as:

$$\mathrm{d}\log CPI^{n} = \underbrace{\mathrm{d}\log \zeta^{n}}_{\mathrm{AD \ shock}} - (\Lambda^{n})^{T} \mathrm{d}\log \boldsymbol{L} - (\lambda^{n})^{T} \mathrm{d}\log \boldsymbol{A}$$

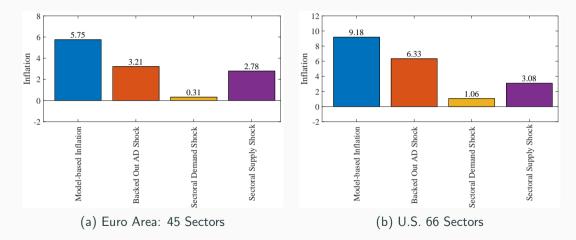
- Labor shortages, at home and abroad, are inflationary domestically
- Positive productivity changes everywhere, $d \log A$, are deflationary
- AD Shock includes both domestic AD shocks and exchange rate change

Quantification

- Three countries:
 - United States
 - Euro Area
 - Rest of the world
- Three sectors:
 - Durable
 - Non-durable
 - Services

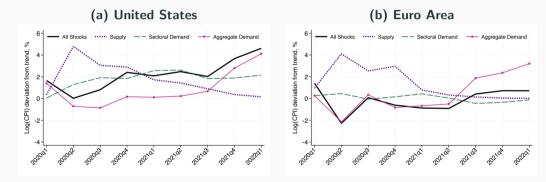

Mapping data to model shocks

- 1. Sectoral demand shocks $(d\Omega_{nj})$: Observed sectoral expenditure shares changes in country nwith $\sum_{i \in \mathcal{J}} d\Omega_{nj} = 0$
 - United States: BEA sectoral personal consumption expenditure
 - Euro Area: OECD Quarterly National Accounts
 - Rest of the world: estimates based on infection levels
- 2. Country-sectoral potential supply shocks $(d \log \overline{L}_{ni})$: Observed changes in total hours worked in country *n*, sector *i*
 - United States: BLS tables B1 and B2
 - Euro Area: EuroStat
 - Rest of the world: estimates based on infection levels
- 3. Country-level aggregate demand shocks $(d \log \zeta^n)$: Nominal (I.c.) expenditure changes
 - United States: Gross national income
 - Euro Area: EuroStat
 - $\bullet~\mbox{Rest}$ of the world: country-weighted nominal GDP growth


- Model requires initial consumption and input-output shares
 - We use the cross-country input-output database from the OECD year 2018
- Elasticities:
 - Between value added and intermediate inputs: $\theta = 0.6$ (Atalay, 2017; Carvalho et. al, 2021)
 - Between labor and capital: $\gamma = 0.6$ (Raval, 2019; Oberfield and Raval, 2021)
 - Among intermediates: $\varepsilon = 0.2$ (Atalay, 2017; Boehm, Flaaen, and Pandalai-Nayar, 2019)
 - Cross-country Armington: $\xi = 4.55$

(Caliendo & Parro, 2015)

- We set country-sector productivity changes to zero throughout
 - Recent evidence on pandemic suggests little changes in aggregate/sectoral productivity w/no labor reallocation across sectors in the US (Fernald and Li, 2022)
 - Want to give full chance to sectoral labor shocks to mimic the reality of sectoral shortages and demand-supply imbalances


Inflation Drivers before Russia War

 \Rightarrow Supply-side account for $\approx 1/2$ for Euro Area and $\approx 1/3$ for US (rest is demand; fiscal stimulus is 65 percent of AD)

 $\Rightarrow~$ MP can be effective by \downarrow AD but \uparrow pressure in prices with sectoral supply shocks

Inflation Drivers over Time 2020-2022

Extended period

US Monetary Policy Transmission At Home

Monetary Policy Transmission under Heterogeneity

$$\begin{array}{c} \text{Interest rates} \underbrace{\Rightarrow \text{Firm Credit}}_{\text{Heterogeneity}} \Rightarrow \text{Investment, Employment} \end{array}$$

Monetary Policy Effectiveness

Two types of heterogeneity are critical:

- 1. Size of the firm
- 2. Type of collateral

Extensive theoretical literature:

- Consumption: Kaplan et al. 2018, Auclert 2019, Wong 2019, ...
- Investment: Ottonello and Winberry, 2021.
- Hetero: Financial frictions/credit constraints faced by different types of households/firms.

Extensive theoretical literature:

- Consumption: Kaplan et al. 2018, Auclert 2019, Wong 2019, ...
- Investment: Ottonello and Winberry, 2021.
- Hetero: Financial frictions/credit constraints faced by different types of households/firms.

Empirical literature mostly use data on publicly listed firms and/or very large firms

Extensive theoretical literature:

- Consumption: Kaplan et al. 2018, Auclert 2019, Wong 2019, ...
- Investment: Ottonello and Winberry, 2021.
- Hetero: Financial frictions/credit constraints faced by different types of households/firms.

Empirical literature mostly use data on publicly listed firms and/or very large firms

- Listed firms account for 26% of employment and 44% of gross output; understanding private firms' financing is first-order for aggregate outcomes
- SMEs defined by SBA as ${<}500$ employee, account for 54% of employment, 53% of output

Extensive theoretical literature:

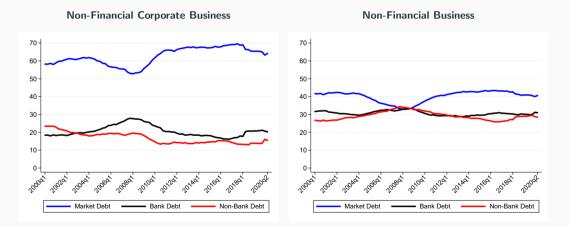
- Consumption: Kaplan et al. 2018, Auclert 2019, Wong 2019, ...
- Investment: Ottonello and Winberry, 2021.
- Hetero: Financial frictions/credit constraints faced by different types of households/firms.

Empirical literature mostly use data on publicly listed firms and/or very large firms

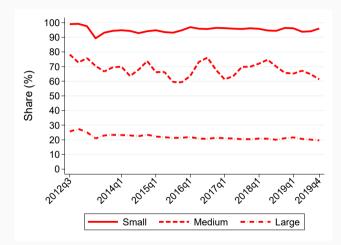
- Listed firms account for 26% of employment and 44% of gross output; understanding private firms' financing is first-order for aggregate outcomes
- SMEs defined by SBA as ${<}500$ employee, account for 54% of employment, 53% of output

We use supervisory administrative data for a representative sample of the U.S. economy, composed of private firms and SMEs

Y-14: CCAR-Supervisory Data on Bank Lending

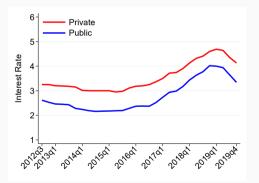

- Firm-bank-loan-quarter level with a reporting threshold of \$1 million.
- Contractual terms and firm balance sheet items.
- 2012Q3–2019Q4, all sectors. Almost 4 million loan-level observations for 150,000+ corporations, of which 60,000+ have assets less than 10 million. \Rightarrow SME: Assets< 10m, Revenue<50m

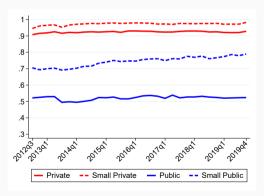
Y-14: CCAR-Supervisory Data on Bank Lending


- Firm-bank-loan-quarter level with a reporting threshold of \$1 million.
- Contractual terms and firm balance sheet items.
- 2012Q3–2019Q4, all sectors. Almost 4 million loan-level observations for 150,000+ corporations, of which 60,000+ have assets less than 10 million. \Rightarrow SME: Assets< 10m, Revenue<50m

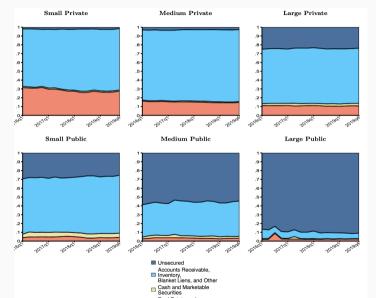
Coverage:

- The banks subject to CCAR account for over 85% of the total assets in the banking sector and provide around 70% of all commercial and industrial lending.
- Supervisory data on private firms' financing: representative relative to Compustat, QFR, Dealscan, CapitalIQ, SBFS,...
- Y14 firms account 65% of U.S. corporate sector debt and 78% of aggregate U.S. gross output.

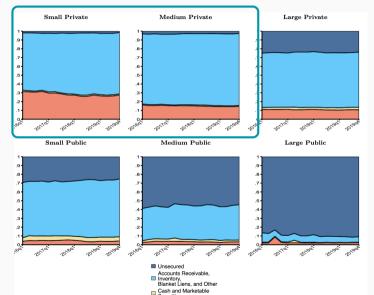

Private Firms' Share of Bank Debt in Total Debt: FR Y-14



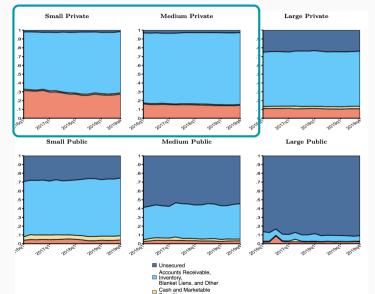
• The entire balance sheet debt of SMEs is bank debt



Share of Loans Collateralized



Collateral Types and Financial Constraints


- → <u>Asset-based</u>: Real estate, fixed assets, cash&securities
 - \Rightarrow Earnings and operation-based: Blanket-liens and accounts receivable & inventory
- Securing financing through AR&I and blanket liens falls monotonically across the size distribution and is replaced by unsecured lending.

Collateral Types and Financial Constraints

- → <u>Asset-based</u>: Real estate, fixed assets, cash&securities
 - \Rightarrow Earnings and operation-based: Blanket-liens and accounts receivable & inventory
- Securing financing through AR&I and blanket liens falls monotonically across the size distribution and is replaced by unsecured lending.
- SMEs rely mostly on AR&I and blanket liens rather than real estate or fixed assets.

Collateral Types and Financial Constraints

- → <u>Asset-based</u>: Real estate, fixed assets, cash&securities
 - \Rightarrow Earnings and operation-based: Blanket-liens and accounts receivable & inventory
- Securing financing through AR&I and blanket liens falls monotonically across the size distribution and is replaced by unsecured lending.
- SMEs rely mostly on AR&I and blanket liens rather than real estate or fixed assets.
- Lian and Ma (2021), Drechsel (2023): importance of earnings based-lending instead of asset based-lending for public/large firms in U.S.

 \Rightarrow More important for private firms and SMEs in U.S. based on actual collateral data.

Varying Firm Credit Demand Over Time (Aggregate Loans to Firm-Bank Level):

$$\log \sum_{l \in \mathcal{L}(f,b,q)} Y_{f,b,s,q}(l) = \alpha_{f,b} + \alpha_{s,q} + \alpha_{b,q} + \kappa \left(\mathsf{High Leverage Firm}_{f} \times \mathsf{MP}_{q} \right) + \vartheta_{f,b,s,q}$$
(1)

Y: **loan amount, loan spread.** $\mathcal{L}(f, b, q)$: set of loans between firm (*f*)-bank (*b*), quarter *q*. <u>Controls:</u> Firm-quarter variables—sales growth, size, ...

	Qua	Quantity: Log(Loan)			Prices: Log(1+i)			
	All	Private	Public	All	Private	Public		
High Leverage Firm \times MP Surprise _q	-0.4212***	-0.8478***	-0.0498	-0.0262***	-0.0395***	0.0156**		
	(0.0772)	(0.1221)	(0.2075)	(0.0027)	(0.0035)	(0.0046)		
Observations	2460475	2140482	319985	2472261	2150197	322056		
Adjusted R ²	0.945	0.939	0.837	0.768	0.768	0.676		
$Bank \times Firm F.E.$	Yes	Yes	Yes	Yes	Yes	Yes		
$Bank \times Time F.E.$	Yes	Yes	Yes	Yes	Yes	Yes		
Firm \times Time F.E.	No	No	No	No	No	No		

- High leverage firms borrow more, paying higher rates during expansionary policy.
- All firm results are driven by private firms.

Mapping Credit Market Heterogeneity and Monetary Policy Transmission at the Loan Level: The Role of Collateral

$$\log \mathsf{Y}_{l,f,b,q} = \alpha_{f,b,q} + \beta \mathsf{Collateral Type}_l + \kappa (\mathsf{Collateral Type}_l \times \mathsf{MP}_q) + \vartheta_{l,f,b,q}$$
(2)

Control other loan level variables: maturity, loan types, new originations

Role of Collateral Type in Monetary Policy Transmission

	Quantity: Log(Loan)		Prices: $Log(1 + i)$		
	Private Firms	Public Firms	Private Firms	Public Firms	
Asset-based	0.0278	-1.6386***	-0.0010	0.0195***	
	(0.0546)	(0.0719)	(0.0012)	(0.0010)	
Earnings & Operations-based	0.6912***	-0.4388***	-0.0085***	0.0054***	
	(0.0608)	(0.0949)	(0.0012)	(0.0009)	
Asset-based $\times MP_q$	-1.5839***	-0.3345	-0.0260*	0.0305*	
	(0.4050)	(0.7612)	(0.0107)	(0.0120)	
Earnings & Operations-based \times MP _q	-2.5402***	-4.0888***	-0.0293*	-0.0300**	
	(0.4689)	(0.9127)	(0.0107)	(0.0106)	
Observations	1371794	485440	1377795	481327	
Adjusted R^2	0.310	0.330	0.366	0.390	
Bank \times Firm \times Time F.E.	Yes	Yes	Yes	Yes	

• Normal times access to finance effect for private borrowers is from earnings and operation based collateral. 39/60

Role of Collateral Type in Monetary Policy Transmission

	Quantity: Log(Loan)		Prices: $Log(1 + i)$		
	Private Firms	Public Firms	Private Firms	Public Firms	
Asset-based	0.0278	-1.6386***	-0.0010	0.0195***	
	(0.0546)	(0.0719)	(0.0012)	(0.0010)	
Earnings & Operations-based	0.6912***	-0.4388***	-0.0085***	0.0054***	
	(0.0608)	(0.0949)	(0.0012)	(0.0009)	
$Asset-based\timesMP_q$	-1.5839***	-0.3345	-0.0260*	0.0305*	
	(0.4050)	(0.7612)	(0.0107)	(0.0120)	
Earnings & Operations-based \times MP $_q$	-2.5402***	-4.0888***	-0.0293*	-0.0300**	
	(0.4689)	(0.9127)	(0.0107)	(0.0106)	
Observations	1371794	485440	1377795	481327	
Adjusted R^2	0.310	0.330	0.366	0.390	
Bank \times Firm \times Time F.E.	Yes	Yes	Yes	Yes	

• During expansionary policy both type of collateral increase borrowing, but only earnings and operation based $_{39/60}$

Role of Collateral Type in Monetary Policy Transmission

	Quantity: Log(Loan)		Prices: $Log(1 + i)$		
	Private Firms	Public Firms	Private Firms	Public Firms	
Asset-based	0.0278	-1.6386***	-0.0010	0.0195***	
	(0.0546)	(0.0719)	(0.0012)	(0.0010)	
Earnings & Operations-based	0.6912***	-0.4388***	-0.0085***	0.0054***	
	(0.0608)	(0.0949)	(0.0012)	(0.0009)	
$Asset-based\timesMP_q$	-1.5839***	-0.3345	-0.0260*	0.0305*	
	(0.4050)	(0.7612)	(0.0107)	(0.0120)	
Earnings & Operations-based \times MP $_q$	-2.5402***	-4.0888***	-0.0293*	-0.0300**	
	(0.4689)	(0.9127)	(0.0107)	(0.0106)	
Observations	1371794	485440	1377795	481327	
Adjusted R^2	0.310	0.330	0.366	0.390	
Bank \times Firm \times Time F.E.	Yes	Yes	Yes	Yes	

• Both type of collateral signal distress in normal times and during expansionary policy for public firms.

Financial Constraints and Macro: Importance of Granular Data

Three ways of modeling borrowing constraints in Closed/Open Macro

1. Kiyotaki-Moore: Risk-free debt limited by future resale value of FIXED ASSETS/K

 $R_t b_t \leq q_{t+1} k_t$

2. <u>Bianchi-Mendoza</u>: Risk-free debt limited by current value of assets since borrower can run away—future value cannot match sudden stops

$$R_t b_t \leq q_t k_t \leq \theta k_t$$

3. Earnings-based, Drechsel-Lian/Ma: Risk-free debt limited by current value of INCOME, lenders take over the firm

 $R_t b_t \leq \theta y_t$

Three ways of modeling borrowing constraints in Closed/Open Macro

1. Kiyotaki-Moore: Risk-free debt limited by future resale value of FIXED ASSETS/K

 $R_t b_t \leq q_{t+1} k_t$

2. <u>Bianchi-Mendoza</u>: Risk-free debt limited by current value of assets since borrower can run away—future value cannot match sudden stops

$$R_t b_t \leq q_t k_t \leq \theta k_t$$

3. Earnings-based, Drechsel-Lian/Ma: Risk-free debt limited by current value of INCOME, lenders take over the firm

$$R_t b_t \leq \theta y_t$$

Data: Risky debt limited by current income/earnings

$$(R_t + \alpha_i)b_t \leq q_t y_t \leq \theta_i y_t$$

 b_t : debt, k_t : capital, R_t : safe-rate, α_i firm specific risk premium, θ_i : firm specific collateral

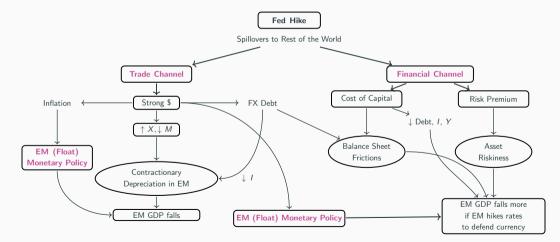
1. Asset-based constraints:

Externality: Firms do not take into account effect of their actions on assets prices, q_t or q_{t+1} Higher demand for borrowing, higher asset prices, more borrowing

 \Rightarrow Policy attacks over-borrowing! (Macropru/capital control)

2. Earnings-based constraints:

Current net income/profits=Ability to generate income now and future=Going concern value:


 $y_t = \text{Sales} + q_t k_t - w_t L_t$

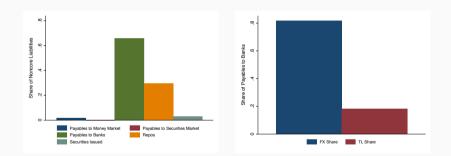
<u>Externality</u>: Firms do not take into account effect of their actions on all input prices Higher demand for borrowing, higher asset prices (higher income), higher wages (lower income) \Rightarrow Policy

attacks under-borrowing! (Japan-liquidity trap; COVID-PPP)

International Transmission of U.S. Monetary Policy

How US FED Hikes Transmit to the ROW?

Not every country is the same in terms of:


- Composition of capital flows
- Risk sentiments of investors
- FX debt and other fundamentals
- Credibility of monetary policies and institutional environment

Macro Facts

(a) GFC and Lending Rates ($\rho = 0.52$) (b) GFC and Non-Core Liabilities ($\rho = -0.51$) 9 * X 8 N S 8 2003q3 200803 201101 2013q3 2006q1 2011q1 2013q3 2006q1 2003q3 2008q3 Date Date - Lending Rate log(VIX) - Median Bank Non-core Ratio - log(VR) (c) GFC and UIP ($\rho = 0.61$) (d) GFC and Collateral ($\rho = 0.01$) <u>و</u> 01 UIP De æ 200303 2006a1 200803 2011a1 201303 200303 2006a1 200803 2011a1 201303 Date Date - Turkey's UIP Deviation - log(VIX) - - Collateral/Loans - log(VIX)

44 / 60

Decomposition of Non-Core Liabilities

- 43 % of cyclical credit growth is due to GFC
- Key channel is falling risk-premium, which lowers borrowing costs for average firm regardless of collateral constraints that are not impacted by GFC
- The pro-cylicality in the UIP risk premium with VIX implies that local currency borrowing becomes cheaper and increases during the boom phase of GFC

- 43 % of cyclical credit growth is due to GFC
- Key channel is falling risk-premium, which lowers borrowing costs for average firm regardless of collateral constraints that are not impacted by GFC
- The pro-cylicality in the UIP risk premium with VIX implies that local currency borrowing becomes cheaper and increases during the boom phase of GFC
- Implication for macropru policies and theoretical work:
 - Limiting private agents' foreign currency borrowing during credit boom events/lean against appreciation may not be sufficient
 - Lower borrowing costs also fuel local currency borrowing if banks can fund themselves cheaply in international markets

EMs Endogenous Policy Response

• Emerging economies are largely exposed to global financial conditions

• Emerging economies are largely exposed to global financial conditions

- Changes in global financial conditions pose trade-off to central banks
 - Example: U.S. monetary tightening \rightarrow tighter global financial conditions

(Miranda-Agrippino & Rey 20, Kalemli-Ozcan 19)

- Central banks in emerging economies can:
 - (a) increase their policy rate \rightarrow curtail capital outflows & FX depreciation
 - (b) lower their policy rate \rightarrow stimulate domestic economic activity

- Emerging economies are largely exposed to global financial conditions
- Changes in global financial conditions pose trade-off to central banks
 - Example: U.S. monetary tightening \rightarrow tighter global financial conditions

(Miranda-Agrippino & Rey 20, Kalemli-Ozcan 19)

- Central banks in emerging economies can:
 - (a) increase their policy rate \rightarrow curtail capital outflows & FX depreciation
 - (b) lower their policy rate \rightarrow stimulate domestic economic activity

• Global financial cycle challenges transmission of domestic monetary policy

- 1. Monetary policy is countercyclical: central banks lower policy rates during recessions
 - unconditionally, conditional on U.S. mon. pol. tightening & around episodes of global distress

- 1. Monetary policy is countercyclical: central banks lower policy rates during recessions
 - unconditionally, conditional on U.S. mon. pol. tightening & around episodes of global distress
 Does global financial cycle challenges transmission of monetary policy?

- 1. Monetary policy is countercyclical: central banks lower policy rates during recessions
 - unconditionally, conditional on U.S. mon. pol. tightening & around episodes of global distress
 Does global financial cycle challenges transmission of monetary policy?
- 2. Short-term market rates are disconnected from policy rates in emerging economies
 - market rates depart from policy rates over the business cycle
 - in advanced economies: market rates \approx policy rates

- 1. Monetary policy is countercyclical: central banks lower policy rates during recessions
 - unconditionally, conditional on U.S. mon. pol. tightening & around episodes of global distress
 Does global financial cycle challenges transmission of monetary policy?

2. Short-term market rates are disconnected from policy rates in emerging economies

- market rates depart from policy rates over the business cycle
- in advanced economies: market rates \approx policy rates
- 3. Short-term disconnect comoves with global financial conditions
 - Short-term disconnect strongly related to Dollar Premium & CIP Premium
 - Consistent with simple model where financial intermediaries' funding conditions determine market rates: policy pass-through to market rates incomplete if funding is global

• Empirical evidence on the behavior of policy rates:

- 1. policy rates around periods of global distress ("risk-off shocks") Global Financial Crisis, Taper Tantrum, COVID-19
- 2. estimation of central bank reaction function OLS estimation of Taylor-type rules

(Taylor 93, Carvalho et al. 21)

• Empirical evidence on the behavior of policy rates:

- 1. policy rates around periods of global distress ("risk-off shocks") Global Financial Crisis, Taper Tantrum, COVID-19
- 2. estimation of central bank reaction function OLS estimation of Taylor-type rules
- 3. dynamic correlation of policy rates with GDP growth

(Taylor 93, Carvalho et al. 21)

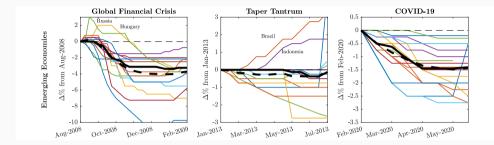
• Empirical evidence on the behavior of policy rates:

- 1. policy rates around periods of global distress ("risk-off shocks") Global Financial Crisis, Taper Tantrum, COVID-19
- 2. estimation of central bank reaction function OLS estimation of Taylor-type rules
- 3. dynamic correlation of policy rates with GDP growth
- 4. policy rates during identified U.S. monetary policy shocks High-frequency surprises in U.S. interest rates

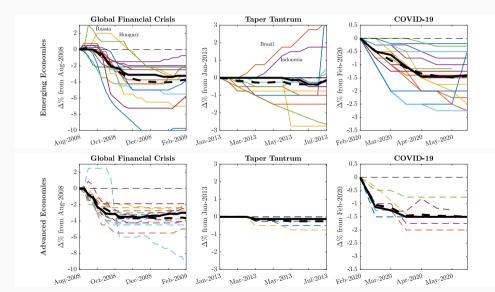
(Taylor 93, Carvalho et al. 21)

(Gertler & Karadi 15)

• Empirical evidence on the behavior of policy rates:


- 1. policy rates around periods of global distress ("risk-off shocks") Global Financial Crisis, Taper Tantrum, COVID-19
- 2. estimation of central bank reaction function OLS estimation of Taylor-type rules
- 3. dynamic correlation of policy rates with GDP growth
- 4. policy rates during identified U.S. monetary policy shocks High-frequency surprises in U.S. interest rates
- Focus on flexible exchange rate regime countries
- Data sources: BIS, Bloomberg, IMF Int'l Financial Statitics

(Taylor 93, Carvalho et al. 21)


(Gertler & Karadi 15)

(Ilzetki et al. 19)

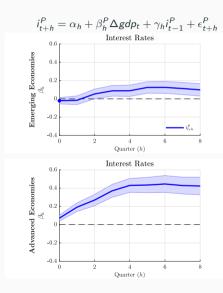
Monetary policy rates around episodes of global distress

Monetary policy rates around episodes of global distress

50 / 60

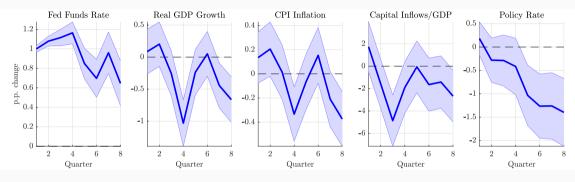
(1990-2018)

$$i_t^P = \alpha + \beta_1 i_{t-1}^P + \beta_2 \pi_t + \beta_3 \tilde{y}_t + \epsilon_t$$


	Emerging Economies		Advanced Economies	
i_{t-1}^P	0.860***	0.826***	0.944***	0.930***
	(0.0058)	(0.0079)	(0.0075)	(0.0082)
π_t	0.394***	0.419***	0.304***	0.265***
	(0.027)	(0.034)	(0.029)	(0.028)
$\Delta g d p_t$	0.00892**		0.00133	
	(0.0037)		(0.0017)	
Output gap _t		0.0591***		0.0844***
		(0.020)		(0.011)
R-Squared	0.93	0.87	0.96	0.95

- A Taylor rule characterizes policy rates fairly well
- Estimates similar across emerging & adv. economies
- Estimates imply ho pprox 0.8, $\phi_\pi pprox$ 2, $\phi_y pprox$ 0.5

• Estimates suggest that monetary policy stance is countercyclical


Cyclicality of policy rates

During good times, monetary policy is tighter

U.S. monetary policy tightening & policy rates in emerging econ.

Impulse: 1 p.p. exogenous increase in Fed Funds Rate (Gertler & Karadi 15)

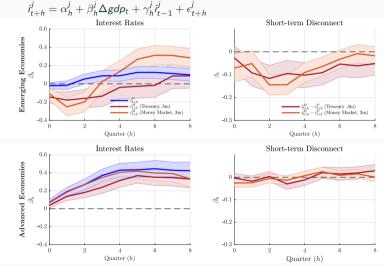
- policy rates decline after US MP tightening
- amongst contracting GDP, CPI Inflation, capital inflows

(see also Dedola et al. 17 & lacoviello & Navarro 19, Degasperi et al. 23)

Short-term rates in emerging economies

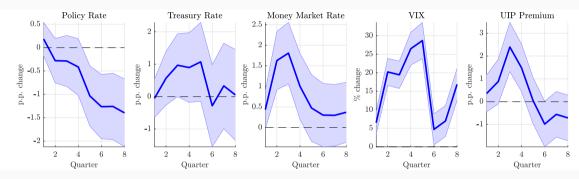
• Policy rates measure the stance of monetary policy

"Target interest rate set by central banks in their efforts to influence short-term interest rates as part of their monetary policy strategy"


• Short-term market rates measure the stance of monetary policy imperfectly

- Treasury rates: rates at which governments issue bonds
- Money market rates: rates charged on loans among banks

• Next: behavior of 3-month Treasury & Money market rates in AEs & EMEs


Cyclicality of policy rates and market rates

(1990-2018)

- market and policyx rates display opposite cyclicality in EMEs
- virtually identical cyclicality in AEs
- relevant distinction for Interpretation of cyclical stance of monetary policy

U.S. monetary policy tightening , policy rates & market rates

Impulse: 1 p.p. exogenous increase in Fed Funds Rate (Gertler & Karadi 15)

- market and policy rates display opposite response to US MP in EMEs
 - $\rightarrow\,$ policy rates decline after US MP tightening
 - $\rightarrow~\text{market}$ rates increase after US MP tightening

Short-term disconnect & global financial conditions

• Explore comovement of short-term disconnect with global financial conditions

Short-term disconnect & global financial conditions

- Explore comovement of short-term disconnect with global financial conditions
- Consider three "financial wedges" that emerge in global financial markets

1. Dollar Premium: premium on country's dollar bond relative to US bond $\hat{i}_t^{\star} - i_t^{\star}$ Bianchi & Lorenzoni 22

2. UIP Premium: excess currency returns on the home-currency bond $i_t - i_t^* - (E_t s_{t+1} - s_t)$

Gabaix & Maggiori 15, Kalemli-Ozcan & Varela 22

3. CIP Premium difference between synthetic dollar bond and cash dollar bond $i_t - i_t^* - (f_t - s_t)$ Du & Schreger 16, Du et al. 18 JIE, Du et al. 18 JF

Short-term disconnect & global financial conditions

- Explore comovement of short-term disconnect with global financial conditions
- Consider three "financial wedges" that emerge in global financial markets

1. Dollar Premium: premium on country's dollar bond relative to US bond $\hat{i}_t^* - i_t^*$ Bianchi & Lorenzoni 22

- 2. UIP Premium: excess currency returns on the home-currency bond $i_t i_t^* (E_t s_{t+1} s_t)$ Gabaix & Maggiori 15. Kalemli-Ozcan & Varela 22
- 3. CIP Premium difference between synthetic dollar bond and cash dollar bond $i_t i_t^{\star} (f_t s_t)$ Du & Schreger 16, Du et al. 18 JIE, Du et al. 18 JF
- Use EMBI spread as proxy for Dollar Premium & 12-m market rates for UIP & CIP Premium.

	Treasury rate disconnect		Money market rate disconnect	
	(1)	(2)	(3)	(4)
Dollar Premium	0.455*** (0.049)	0.406*** (0.054)	0.395*** (0.038)	0.367*** (0.041)
UIP Premium	-0.008* (0.003)	-0.010** (0.004)	-0.002 (0.003)	-0.005 (0.003)
CIP Premium	-0.080*** (0.019)	-0.071* (0.031)	-0.203*** (0.015)	-0.103*** (0.023)
R2 (within)	0.078	0.062	0.197	0.093

	Treasury rate disconnect		Money market rate disconnect		
	(1)	(2)	(3)	(4)	
Dollar Premium	0.455***	0.406***	0.395***	0.367***	
	(0.049)	(0.054)	(0.038)	(0.041)	
UIP Premium	-0.008*	-0.010**	-0.002	-0.005	
	(0.003)	(0.004)	(0.003)	(0.003)	
CIP Premium	-0.080***	-0.071*	-0.203***	-0.103***	
	(0.019)	(0.031)	(0.015)	(0.023)	
R2 (within)	0.078	0.062	0.197	0.093	

	Treasury rate disconnect		Money market rate disconnect	
	(1)	(2)	(3)	(4)
Dollar Premium	0.455*** (0.049)	0.406*** (0.054)	0.395*** (0.038)	0.367*** (0.041)
UIP Premium	-0.008* (0.003)	-0.010** (0.004)	-0.002 (0.003)	-0.005 (0.003)
CIP Premium	-0.080*** (0.019)	-0.071* (0.031)	-0.203*** (0.015)	-0.103*** (0.023)
R2 (within)	0.078	0.062	0.197	0.093

	Treasury rate disconnect		Money market rate disconnect	
	(1)	(2)	(3)	(4)
Dollar Premium	0.455***	0.406***	0.395***	0.367***
	(0.049)	(0.054)	(0.038)	(0.041)
UIP Premium	-0.008*	-0.010**	-0.002	-0.005
	(0.003)	(0.004)	(0.003)	(0.003)
CIP Premium	-0.080***	- 0.071 *	-0.203***	- 0.103 ***
	(0.019)	(0.031)	(0.015)	(0.023)
R2 (within)	0.078	0.062	0.197	0.093

How to Model the Short-rate Disconnect?

• A short rate disconnect can arise with collateral constraints on <u>home banks'</u> capital market access (Gertler-Karadi 15)

 \Rightarrow (e.g Mendoza 10, Gabaix and Maggiori 15, Basu et al. 20)

- A short rate disconnect can arise with collateral constraints on <u>home banks'</u> capital market access (Gertler-Karadi 15)
 - \Rightarrow (e.g Mendoza 10, Gabaix and Maggiori 15, Basu et al. 20)

- It can also arise when international funding costs for <u>home banks</u> differ from the safe foreign rate and fluctuates with risk-on/off shocks
 - \Rightarrow tighter global financial conditions means higher funding costs for <u>home banks</u>

- Global production and trade network played a critical role in recent global inflation under sectoral demand, supply and AD shocks combined with input complementarity
- Earnings based constraints and bank dependent firms are important for domestic and international transmission of US monetary policy
- Risk premia is important for the heterogeneity in international transmission of US monetary policy
- EM's monetary policy stance, as implied by policy rates, is countercyclical
- Global financial cycle leads to limited monetary policy effectiveness in EM but not in AE